Publicaciones

Revisa la lista completa en Pubmed


SNX5 promotes antigen presentation in B cells by dual regulation of actin and lysosomal dynamics
Cabrera-Reyes F, Contreras-Palacios T, Ulloa R, Jara-Wilde J, Caballero M, Quiroga C, Feijoo CG, Díaz-Muñoz J and Yuseff MI
B cells rapidly adapt their endocytic pathway to promote the uptake and processing of extracellular antigens recognized through the B-cell receptor (BCR). The mechanisms coupling changes in endomembrane trafficking to the capacity of B cells to screen for antigens within lymphoid tissues remain unaddressed. We investigated the role of SNX5, a member of the sorting nexin family, which interacts with endocytic membranes to regulate vesicular trafficking and macropinocytosis. Our results show that in steady state, B cells form SNX5-rich protrusions at the plasma membrane, which dissipate upon interaction with soluble antigens, whereas B cells activated with immobilized antigens accumulate SNX5 at the immune synapse where it regulates actin-dependent spreading responses. B cells silenced for SNX5 exhibit enlarged lysosomes, which are not recruited to the synaptic membrane, decreasing their capacity to extract immobilized antigens. Overall, our findings reveal that SNX5 is critical for actin-dependent plasma membrane remodeling in B cells involved in antigen screening and immune synapse formation, as well as endolysosomal trafficking required to promote antigen extraction and presentation.
Exploring Neuroprotection against Radiation-Induced Brain Injury: A Review of Key Compounds
González-Johnson L, Fariña A, Farías G, Zomosa G, Pinilla-González V and Rojas-Solé C
Brain radiation is a crucial tool in neuro-oncology for enhancing local tumor control, but it can lead to mild-to-profound and progressive impairments in cognitive function. Radiation-induced brain injury is a significant adverse effect of radiotherapy for cranioencephalic tumors, primarily caused by indirect cellular damage through the formation of free radicals. This results in late neurotoxicity manifesting as cognitive impairment due to free radical production. The aim of this review is to highlight the role of different substances, such as drugs used in the clinical setting and antioxidants such as ascorbate, in reducing the neurotoxicity associated with radiation-induced brain injury. Currently, there is mainly preclinical and clinical evidence supporting the benefit of these interventions, representing a cost-effective and straightforward neuroprotective strategy.
Mitochondrial dynamics and sex-specific responses in the developing rat hippocampus: Effect of perinatal asphyxia and mesenchymal stem cell Secretome treatment
Zamorano-Cataldo M, Vega-Vásquez I, García-Navarrete C, Toledo J, Bustamante D, Ezquer F, Urra FA, Farfán-Troncoso N, Herrera-Marschitz M and Morales P
Perinatal asphyxia is one of the major causes of neonatal death at birth. Survivors can progress but often suffer from long-term sequelae. We aim to determine the effects of perinatal asphyxia on mitochondrial dynamics and whether mesenchymal stem cell secretome (MSC-S) treatment can alleviate the deleterious effects.
Molecular characterization of Fasciola hepatica obtained from cattle and horse in Central Chile
Cabrera G, Cabezas C, Estay-Olea D, Stoore C, Baquedano MS, Paredes R and Hidalgo C
Liver fluke infection, caused by the trematode Fasciola hepatica, is a parasitic zoonotic disease affecting various mammals, including humans, and has significant implications for public, animal, and ecosystem health. This study provides the first genetic characterization of F. hepatica in Chile, focusing on the complete mitochondrial gene cox1. Samples were collected from two different host species: cattle and horses. Our findings revealed that 70 % of detected haplotypes were found in either cattle or horses, which coincides with their geographical origin. Interestingly, the use of full-length sequences resulted in the identification of 80 % unique sequences, whereas this reduced to 45 % when analyzing the traditionally used short sequences. This underestimation of genetic diversity suggests that broader sequencing efforts might be essential for a more accurate understanding of F. hepatica genetic landscape. This research underscores the importance of understanding the genetic variability in parasites to improve strategies for disease control and treatment.
Metabolic energetic adaptation of Atlantic salmon phagocytes to changes in carbon sources and exposure to PAMPs
Ortiz D, Guajardo F, Talamilla-Espinoza A, Vera-Tamargo F, Pérez-Valenzuela J, Mejías M, Pino-Quezada L, Galdames-Contreras F, Mandakovic D, Wacyk J, Urra FA and Pulgar R
Phagocytic cells are pivotal for host homeostasis and infection defense, necessitating metabolic adaptations in glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). While mammalian phagocytes shift towards glycolysis and glutaminolysis during polarization, research on fish phagocyte metabolic reprogramming is limited. To address this, the Atlantic salmon phagocytic cell line, SHK-1, serves as a valuable model. Using the Seahorse XFe96 Flux Analyzer, this study compares SHK-1 bioenergetics under glucose-restricted (L-15 medium) and glucose-supplemented (PM) conditions, providing insights into metabolic characteristics and responses to Piscirickettsia salmonis bacterium Pathogen-associated molecular patterns (PAMPs). A standardized protocol for the study of real-time changes in the metabolism study of SHK-1 in PM and L-15 media, determining oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) is shown. Exhibiting metabolic adaptations, SHK-1 cells in the PM medium have higher basal and maximal OCR and spare capacity (SRC), while those grown in the L-15 medium favor OXPHOS, showing minimal glycolytic function. Despite metabolic differences, intracellular ATP levels are comparable, highlighting the metabolic plasticity and adaptability of SHK-1 cells to various carbon sources. Exposure to PAMPs from Piscirickettsia salmonis induces a metabolic shift, increasing glycolysis and OXPHOS, influencing ATP, lactate, glutamine, and glutamate levels. These findings highlight the role of mitochondrial bioenergetics and metabolic plasticity in salmon phagocytes, offering novel nutritional strategies for host-pathogen interventions based on energy metabolism.
The sodium/ascorbic acid co-transporter SVCT2 distributes in a striated membrane-enriched domain at the M-band level in slow-twitch skeletal muscle fibers
Sandoval D, Mella J, Ojeda J, Bermedo-García F, Low M, Marcellini S, Castro MA, Casas M, Jaimovich E and Henríquez JP
Vitamin C plays key roles in cellular homeostasis, functioning as a potent antioxidant and a positive regulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. SVCT2 is up-regulated during the early fusion of primary myoblasts and decreases during initial myotube growth, indicating the relevance of vitamin C uptake via SVCT2 for early skeletal muscle differentiation and fiber-type definition. However, our understanding of SVCT2 expression and function in adult skeletal muscles is still limited.
High-fiber basil seed flour reduces insulin resistance and hepatic steatosis in high-fat diet mice
Farías C, Cisternas C, Caicedo A, Mercado L, Valenzuela R, Calderón H, Espinosa A, Videla LA and Muñoz LA
The incidence of insulin resistance (IR) and hepatic steatosis is increasing, with dietary fiber playing a protective role against these disorders. Ocimum basilicum L., widely used in food, pharmaceutical, and cosmetic industries, but their health-promoting properties remain underexplored. This study evaluated the effects of a fiber-rich fraction of partially defatted basil seeds (BSF) on IR, hepatic steatosis, and polyunsaturated fatty acid and short-chain fatty acid (SCFA) profiles in high-fat diet (HFD)-fed C57BL/6 J male mice. Mice were assigned to four groups and fed either a control diet or HFD, supplemented with BSF or oat flour for 4 weeks. HFD induced IR, hepatic steatosis, proinflammatory state, and a significant decreased in SCFA production. In contrast, supplementation with BSF attenuated IR, steatosis, liver damage, oxidative stress, and inflammation, while increasing n-3 polyunsaturated fatty acids in liver, adipocytes, and erythrocytes, and enhancing SCFA production, suggesting potential therapeutic benefits in managing these conditions.
Translation and cultural adaptation of the Long Coronavirus Disease (COVID) Symptom and Impact Tools for the Chilean population
Bachelet VC, Jiménez-Paneque R, Muñoz S, Gomolán P, Sánchez A, Silva-Ayarza I and López Nitsche M
The Long Coronavirus Disease (COVID) Symptom and Impact Tools (ST and IT) were published in English in 2022 to monitor the symptoms and impact of persistent COVID-19. ST includes 53 symptoms selected by the patient. IT includes six aspects of life that the patient must rate from 1 to 10 points. We aim to report the results of the cultural adaptation of both instruments for the Chilean population, together with the content validity of the adapted instrument.
Liver X receptor unlinks intestinal regeneration and tumorigenesis
Das S, Parigi SM, Luo X, Fransson J, Kern BC, Okhovat A, Diaz OE, Sorini C, Czarnewski P, Webb AT, Morales RA, Lebon S, Monasterio G, Castillo F, Tripathi KP, He N, Pelczar P, Schaltenberg N, De la Fuente M, López-Köstner F, Nylén S, Larsen HL, Kuiper R, Antonson P, Hermoso MA, Huber S, Biton M, Scharaw S, Gustafsson JÅ, Katajisto P and Villablanca EJ
Uncontrolled regeneration leads to neoplastic transformation. The intestinal epithelium requires precise regulation during continuous homeostatic and damage-induced tissue renewal to prevent neoplastic transformation, suggesting that pathways unlinking tumour growth from regenerative processes must exist. Here, by mining RNA-sequencing datasets from two intestinal damage models and using pharmacological, transcriptomics and genetic tools, we identified liver X receptor (LXR) pathway activation as a tissue adaptation to damage that reciprocally regulates intestinal regeneration and tumorigenesis. Using single-cell RNA sequencing, intestinal organoids, and gain- and loss-of-function experiments, we demonstrate that LXR activation in intestinal epithelial cells induces amphiregulin (Areg), enhancing regenerative responses. This response is coordinated by the LXR-ligand-producing enzyme CYP27A1, which was upregulated in damaged intestinal crypt niches. Deletion of Cyp27a1 impaired intestinal regeneration, which was rescued by exogenous LXR agonists. Notably, in tumour models, Cyp27a1 deficiency led to increased tumour growth, whereas LXR activation elicited anti-tumour responses dependent on adaptive immunity. Consistently, human colorectal cancer specimens exhibited reduced levels of CYP27A1, LXR target genes, and B and CD8 T cell gene signatures. We therefore identify an epithelial adaptation mechanism to damage, whereby LXR functions as a rheostat, promoting tissue repair while limiting tumorigenesis.
Cisplatin-resistance and aggressiveness are enhanced by a highly stable endothelin-converting enzyme-1c in lung cancer cells
Almarza C, Villalobos-Nova K, Toro MA, González M, Niechi I, Brown-Brown DA, López-Muñoz RA, Silva-Pavez E, Gaete-Ramírez B, Varas-Godoy M, Burzio VA, Jara L, Aguayo F and Tapia JC
Lung cancer constitutes the leading cause of cancer mortality. High levels of endothelin-1 (ET-1), its cognate receptor ETR and its activating enzyme, the endothelin-converting enzyme-1 (ECE-1), have been reported in several cancer types, including lung cancer. ECE-1 comprises four isoforms, which only differ in their cytoplasmic N-terminus. Protein kinase CK2 phosphorylates the N-terminus of isoform ECE-1c, increasing its stability and leading to enhanced invasiveness in glioblastoma and colorectal cancer cells, which is believed to be mediated by the amino acid residue Lys-6, a conserved putative ubiquitination site neighboring the CK2-phosphorylated residues Ser-18 and Ser-20. Whether Lys-6 is linked to the acquisition of a cancer stem cell (CSC)-like phenotype and aggressiveness in human non-small cell lung cancer (NSCLC) cells has not been studied.
Skeletal myotubes expressing ALS mutant SOD1 induce pathogenic changes, impair mitochondrial axonal transport, and trigger motoneuron death
Martínez P, Silva M, Abarzúa S, Tevy MF, Jaimovich E, Constantine-Paton M, Bustos FJ and van Zundert B
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons (MNs), and despite progress, there is no effective treatment. A large body of evidence shows that astrocytes expressing ALS-linked mutant proteins cause non-cell autonomous toxicity of MNs. Although MNs innervate muscle fibers and ALS is characterized by the early disruption of the neuromuscular junction (NMJ) and axon degeneration, there are controversies about whether muscle contributes to non-cell-autonomous toxicity to MNs. In this study, we generated primary skeletal myotubes from myoblasts derived from ALS mice expressing human mutant SOD1 (termed hereafter mutSOD1). Characterization revealed that mutSOD1 skeletal myotubes display intrinsic phenotypic and functional differences compared to control myotubes generated from non-transgenic (NTg) littermates. Next, we analyzed whether ALS myotubes exert non-cell-autonomous toxicity to MNs. We report that conditioned media from mutSOD1 myotubes (mutSOD1-MCM), but not from control myotubes (NTg-MCM), induced robust death of primary MNs in mixed spinal cord cultures and compartmentalized microfluidic chambers. Our study further revealed that applying mutSOD1-MCM to the MN axonal side in microfluidic devices rapidly reduces mitochondrial axonal transport while increasing Ca2 + transients and reactive oxygen species (i.e., HO). These results indicate that soluble factor(s) released by mutSOD1 myotubes cause MN axonopathy that leads to lethal pathogenic changes.
The UPRising connection between endoplasmic reticulum stress and the tumor microenvironment
Urra H, Aravena R, González-Johnson L and Hetz C
The tumor microenvironment (TME) represents a dynamic network of cancer cells, stromal cells, immune mediators, and extracellular matrix components, crucial for cancer progression. Stress conditions such as oncogene activation, nutrient deprivation, and hypoxia disrupt the endoplasmic reticulum (ER), activating the unfolded protein response (UPR), the main adaptive mechanism to restore ER function. The UPR regulates cancer progression by engaging cell-autonomous and cell-non-autonomous mechanisms, reprogramming the stroma and promoting immune evasion, angiogenesis, and invasion. This review explores the role of UPR beyond cancer cells, focusing on how ER stress signaling reshapes the TME, supporting tumor growth. The therapeutic potential of targeting the UPR is also discussed.
Kinin Receptors B1 and B2 Mediate Breast Cancer Cell Migration and Invasion by Activating the FAK-Src Axis
González-Turén F, Lobos-González L, Riquelme-Herrera A, Ibacache A, Meza Ulloa L, Droguett A, Alveal C, Carrillo B, Gutiérrez J, Ehrenfeld P and Cárdenas-Oyarzo A
Kinin receptors B1 and B2 are involved in migration and invasion in gastric, glioma, and cervical cancer cells, among others. However, the role of kinin receptors in breast cancer cells has been poorly studied. We aimed to reveal the impact of B1 and B2 receptors on migration and invasion in breast cancer cells and demonstrate their capacity to modulate in vivo tumor growth. MDA-MB-231, MCF-7, and T47D cells treated with Lys-des[Arg]bradykinin (LDBK) or bradykinin (BK) were used to evaluate migration and invasion. Des-[Arg]-Leu-BK and HOE-140 were used as antagonists for the B1 and B2 receptors. MDA-MB-231 cells incubated or not with antagonists were subcutaneously inoculated in BALBc NOD/SCID mice to evaluate tumor growth. LDBK and BK treatment significantly increased migration and invasion in breast cancer cells, effects that were negated when antagonists were used. The use of antagonists in vivo inhibited tumor growth. Moreover, the migration and invasion induced by kinins in breast cancer cells were inhibited when focal adhesion kinase (FAK) and Src inhibitors were used. The novelty revealed in our work is that B1 and B2 receptors activated by LDBK and BK induce migration and invasion in breast cancer cells via a mechanism that involves the FAK-Src signaling pathway, and the antagonism of both receptors in vivo impairs breast tumor growth.
Giantin mediates Golgi localization of Gal3-O-sulfotransferases and affects salivary mucin sulfation in Sjögren's disease patients
Nuñez M, Carvajal P, Aguilera S, Barrera MJ, Matus S, Couto A, Landoni M, Boncompain G, González S, Molina C, Pino K, Indo S, Figueroa L, González MJ and Castro I
Sjögren's disease is a chronic autoimmune disease characterized by symptoms of oral and ocular dryness and extra-glandular manifestations. Mouth dryness is not only due to reduced saliva volume but also to alterations in the quality of salivary mucins in these patients. Mucins play a leading role in mucosa hydration and protection, where sulfated and sialylated oligosaccharides retain water molecules at the epithelial surface. The correct localization of glycosyltransferases and sulfotransferases within the Golgi apparatus determines adequate O-glycosylation and sulfation of mucins, which depends on specific golgins that tether enzyme-bearing vesicles. Here, we show that a golgin called Giantin is mislocalized in salivary glands from patients with Sjögren's disease and forms protein complexes with Gal3-O-sulfotransferases (Gal3STs), which change their localization in Giantin knockout and knockdown cells. Our results suggest that Giantin could tether Gal3ST-bearing vesicles and that its altered localization could affect Gal3ST activity, explaining the decreased sulfation of MUC5B observed in salivary glands from patients with Sjögren's disease.
In Vitro Evaluation of New 5-Nitroindazolin-3-one Derivatives as Promising Agents against
Pozo-Martínez J, Arán VJ, Zúñiga-Bustos M, Parra-Magna S, Rocha-Valderrama E, Liempi A, Castillo C, Olea-Azar C and Moncada-Basualto M
Chagas disease is a prevalent health problem in Latin America which has received insufficient attention worldwide. Current treatments for this disease, benznidazole and nifurtimox, have limited efficacy and may cause side effects. A recent study proposed investigating a wide range of nitroindazole and indazolone derivatives as feasible treatments. Therefore, it is proposed that adding a nitro group at the 5-position of the indazole and indazolone structure could enhance trypanocidal activity by inducing oxidative stress through activation of the nitro group by NTRs (nitroreductases). The study results indicate that the nitro group advances free radical production, as confirmed by several analyses. Compound (5-nitro-2-picolyl-indazolin-3-one) shows the most favorable trypanocidal activity (1.1 ± 0.3 µM in epimastigotes and 5.4 ± 1.0 µM in trypomastigotes), with a selectivity index superior to nifurtimox. Analysis of the mechanism of action indicated that the nitro group at the 5-position of the indazole ring induces the generation of reactive oxygen species (ROS), which causes apoptosis in the parasites. Computational docking studies reveal how the compounds interact with critical residues of the NTR and FMNH (flavin mononucleotide reduced) in the binding site, which is also present in active ligands. The lipophilicity of the studied series was shown to influence their activity, and the nitro group was found to play a crucial role in generating free radicals. Further investigations are needed of derivatives with comparable lipophilic characteristics and the location of the nitro group in different positions of the base structure.
Therapeutic antibodies in oncology: an immunopharmacological overview
Toledo-Stuardo K, Ribeiro CH, González-Herrera F, Matthies DJ, Le Roy MS, Dietz-Vargas C, Latorre Y, Campos I, Guerra Y, Tello S, Vásquez-Sáez V, Novoa P, Fehring N, González M, Rodríguez-Siza J, Vásquez G, Méndez P, Altamirano C and Molina MC
The biotechnological development of monoclonal antibodies and their immunotherapeutic use in oncology have grown exponentially in the last decade, becoming the first-line therapy for some types of cancer. Their mechanism of action is based on the ability to regulate the immune system or by interacting with targets that are either overexpressed in tumor cells, released into the extracellular milieu or involved in processes that favor tumor growth. In addition, the intrinsic characteristics of each subclass of antibodies provide specific effector functions against the tumor by activating antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, among other mechanisms. The rational design and engineering of monoclonal antibodies have improved their pharmacokinetic and pharmacodynamic features, thus optimizing the therapeutic regimens administered to cancer patients and improving their clinical outcomes. The selection of the immunoglobulin G subclass, modifications to its crystallizable region (Fc), and conjugation of radioactive substances or antineoplastic drugs may all improve the antitumor effects of therapeutic antibodies. This review aims to provide insights into the immunological and pharmacological aspects of therapeutic antibodies used in oncology, with a rational approach at molecular modifications that can be introduced into these biological tools, improving their efficacy in the treatment of cancer.
cIAP-2 protein is upregulated by human papillomavirus in oropharyngeal cancers: role in radioresistance in vitro
Oliva C, Carrillo-Beltrán D, Osorio JC, Gallegos I, Carvajal F, Mancilla-Miranda C, Boettiger P, Boccardo E and Aguayo F
High-risk human papillomaviruses are the causal agents of a subset of head and neck cancers. A previous transcriptomic analysis showed that cIAP2 protein, involved in cell survival and apoptosis, is upregulated in OKF6 oral cells that express HPV16 E6/E7. In addition, cIAP2 promotes radioresistance, a very important concern in HNC treatment. However, cIAP2 increase has not yet been evaluated in oropharyngeal carcinomas (OPCs), nor has been the role of cIAP2 in HNC radioresistance.
The effect of nerve cells on the intestinal barrier function and the influence of human milk oligosaccharides (hMOs) on the intestinal neuro-epithelial crosstalk
Chen X, Gasaly N, Tang X, Walvoort MTC and de Vos P
The intestinal epithelium is an important gatekeeper of the human body by forming a barrier for the luminal content of the intestine. The barrier function is regulated by a complex crosstalk between different cell types, including cells from the enteric nervous system (ENS). ENS is considered to influence gastrointestinal processes and functions, but its direct effect on epithelial barrier function remains to be confirmed. To investigate the effect of nerve cells on the gut barrier function, an co-culture system was established in which T84 intestinal epithelial cells and SH-SY5Y nerve cells were seeded in ratios of 29:1 and 14:1. When the epithelial barrier was disrupted with the calcium ionophores A23187, we found that nerve cells exert a protective effect on A23187-induced disruption and that this protective effect is nerve cell concentration-dependent. This was demonstrated by rescuing effects on transepithelial electrical resistance (TEER) and upregulation of tight junction (TJ) protein expression. Furthermore, we studied whether similar rescuing effects could be achieved with the human milk oligosaccharides (hMOs) 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL). Our results illustrate that in the presence of nerve cells 2'-FL and 3-FL do not have any additional rescuing effects, but that these hMOs can substitute the rescuing effects of nerve cells in the absence of nerve cells. Meanwhile, 2'-FL and 3-FL show different regulation effects on TJ expression. These findings provide valuable insights into potential therapeutic strategies for maintaining intestinal barrier integrity.
Morphine self-administration is inhibited by the antioxidant N-acetylcysteine and the anti-inflammatory ibudilast; an effect enhanced by their co-administration
Quintanilla ME, Morales P, Santapau D, Gallardo J, Rebolledo R, Riveras G, Acuña T, Herrera-Marschitz M, Israel Y and Ezquer F
The treatment of opioid addiction mainly involves the medical administration of methadone or other opioids, aimed at gradually reducing dependence and, consequently, the need for illicit opioid procurement. Thus, initiating opioid maintenance therapy with a lower level of dependence would be advantageous. There is compelling evidence indicating that opioids induce brain oxidative stress and associated glial activation, resulting in the dysregulation of glutamatergic homeostasis, which perpetuates drug intake. The present study aimed to determine whether inhibiting oxidative stress and/or neuroinflammation reduces morphine self-administration in an animal model of opioid dependence.
-derived exovesicles contribute to parasite infection, tissue damage, and apoptotic cell death during infection of human placental explants
Fernández-Moya A, Oviedo B, Liempi A, Guerrero-Muñoz J, Rivas C, Arregui R, Araneda S, Cornet-Gomez A, Maya JD, Müller M, Osuna A, Castillo C and Kemmerling U
, the causative agent of Chagas disease, can be congenitally transmitted by crossing the placental barrier. This study investigates the role of -derived exovesicles (TcEVs) in facilitating parasite infection and the consequent tissue damage and apoptotic cell death in human placental explants (HPEs). Our findings demonstrate that TcEVs significantly enhance the parasite load and induce tissue damage in HPEs, both in the presence and absence of the parasite. Through histopathological and immunohistochemical analyses, we show that TcEVs alone can disrupt the placental barrier, affecting the basal membrane and villous stroma. The induction of apoptotic cell death is evidenced by DNA fragmentation, caspase 8 and 3, and p18 fragment immunodetection. This damage is exacerbated when TcEVs are combined with infection. These findings suggest that TcEVs play a critical role in the pathogenesis of congenital Chagas disease by disrupting the placental barrier and facilitating parasite transmission to the fetus. This study provides new insights into the mechanisms of transplacental transmission of and highlights the potential of targeting TcEVs as a therapeutic strategy against congenital Chagas disease.